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Abstract

High-frequency torsional oscillations of a 50 horsepower (hp) induction motor are investigated up to
approximately 30 kHz. It is experimentally determined that torsional oscillations, due to the switching
harmonics of the motor drive, contribute significantly to the torsional oscillation of the output shaft. Two
torsional vibration models are developed. One model assumes the rotor to be rigid, while the other has a
compliant rotor. The compliant model allows for greater transmission of high-frequency oscillations, and a
better prediction of the measured output shaft vibration.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A typical induction motor is shown schematically in Fig. 1. The major components are the
stator which remains stationary and the rotor which rotates the output shaft. An induction motor
is operated by providing a balanced set of currents to windings in the stator. The currents produce
a rotating magnetic field inside the motor. The rotating field induces current in the rotor, which
then interacts with the magnetic field producing forces on the rotor, resulting in a net torque.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Induction motor schematic and vibration transmission paths.
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The speed of the motor is strongly dependent on the fundamental frequency of the current fed
to the stator windings. Often solid-state inverters are used to alter the frequency of the power
supply [1]. Some of the most common inverters consist of two components: an AC-to-DC rectifier
and a DC-to-AC converter. Together they provided the ability to change the frequency of the
power source. The DC-to-AC conversion involves switching the DC voltage in such a way that
the inverter output approximates the desired waveform. Since the output is not an exact sinusoid,
the signal contains harmonics of the switching frequency, in addition to the desired fundamental
frequency component. These harmonics contribute to the excitation of the rotor, and are often in
a frequency range considered to be high.
Several reasons exist for investigating the vibration of induction motors, and electric machinery

in general. One is that, excessive vibration can lead to catastrophic mechanical failure [2]. Also,
when a structure vibrates in a fluid medium sound is produced. Modern variable speed electric
machines often produce unacceptably high levels of acoustic noise [3]. The noise can be irritating
and can damage one’s hearing. For naval applications, it is desirable to have the acoustic
signature of onboard machinery as small as possible. Further, not only is it important to study
noise in the audible frequency range for industrial and commercial use, but also in the high-
frequency range for naval applications.
To model induction motor vibration, notice that vibration transmission through an induction

machine can be thought of in terms of three paths, as illustrated in Fig. 1. The three paths are:
electromagnetic excitation of the stator, transmission through the bearings, and oscillation down
the shaft. Depending on the application, any of these transmission paths may be the source of
unwanted acoustic radiation. For example, the shaft may drive equipment in the next room, or a
propeller through a ships hull, making shaft oscillation mitigation a priority. The focus of this
paper will be shaft torsional oscillations.
This investigation was motivated by the concern that high-frequency oscillations are

transmitted through the hull of induction-motor-driven submarines, via the output shaft.
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Consequently, the current study has two objectives. First, it is to be shown that high-frequency
torsional oscillations, generated by the motor drive, are transmitted through the motor shaft.
Second, a torsional vibration model is developed that will better approximate high-frequency
torsional response.
The torsional vibration of induction machines has received considerable attention. Sheppard [2],

Calonnec et al. [4], Wang et al. [5], and Hong and Sul [6] investigated torsional oscillation with an
aim to analyze or predict mechanical failure in torsion. Perrin et al. [7] studied the torsional
interaction of induction motors and reciprocating compressors, while Shadley et al. [8] employed a
torsion model to study unstable self-excitation arising from speed–torque characteristics. Torsion,
with respect to control strategies, has been studied by Kim et al. [9,10] and Mine et al. [11]. What
all these investigations have in common is the use of a single rigid body to represent the rotor. This
is an appropriate course of action when studying low-frequency vibration, since the rotor is likely
behaving as a rigid body. However, at high frequencies compliancy of the rotor may be important.
This paper begins with a description of the experimental apparatus. Next, sample experimental

results are presented showing the presence of high-frequency vibration components generated by
the motor drive and transmitted to the motor output. Based on the geometry of the test
apparatus, it continues with the development of two models used to describe the torsional
vibration of an induction motor. The first model assumes compliancy of the rotor in torsion, and
will be referred to as the compliant rotor model. The second model is a special case of
the compliant rotor model; it assumes the rotor to be rigid, and will be referred to as the rigid
rotor model.
2. Experiment

The aim in constructing the apparatus is to learn if high-frequency vibrations, excited by
switching harmonics, are transmitted through the motor output shaft. Section 2.2 will give some
sample experimental results indicating that this is the case.
2.1. Experimental apparatus

A schematic of the test apparatus appears in Fig. 2a. The test motor is a 50 horsepower (hp)
induction motor manufactured by Baldor Motors and Drives. A torque transducer with high-
frequency response, manufactured by Sensor Technology Ltd., is attached to the test motor with a
coupling designed to electrically isolate the transducer from the motor. The optical rotary-type
transducer has a frequency range of 0–10 kHz. It operates by modulating the intensity of a light
beam as a function of torque. The transducer was selected in order to study high-frequency
torsional oscillations of the shaft. The other couplings attaches the transducer to a flywheel.
Throughout this paper, the hardware connecting torque transducers to adjacent components will
be referred to as connection hardware.
As the mode number increases, in a structure with lumped masses or inertias, the most massive

of the lumped elements become displaced less relative to the rest of the structure. Thus, for
sufficiently high modes, the larger lumped elements may be considered to be stationary. For this
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Fig. 2. (a) Schematic and (b) rotating components of the experimental apparatus.
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reason the flywheel was added to the system; at high frequencies it is intended to mechanically
isolate the test motor from the dynamometer.
Continuing down the shaft, the next element is a flexible coupling. This coupling is also

intended to prevent the transmission of oscillation from one side of the test rig to the other. Next,
another torque transducer and a 150 hp dynamometer follow the flexible coupling. The
dynamometer and the adjacent torque transducer were manufactured by Dyne Systems.
A schematic of the rotating components of the experimental apparatus appears in Fig. 2b. The

connection hardware connects the torque transducers to the shafts at either end. In the vibration
models, the connection hardware joining the torque transducer to the flywheel is lumped with the
flywheel. In addition, during the experiments discussed here the flywheel is held fixed. This will be
considered when deriving the vibration models.
The rotor of the test motor is sketched in Fig. 3. It is composed of a number of steel laminations

that are keyed and pressed onto a circular shaft. Aluminum bars, called rotor-bars, are imbedded
in the laminations and run parallel to the shaft. A conductive plate, or end ring, goes over either
end of the rotor, thereby electrically connecting all of the rotor-bars.

2.2. Sample experimental results

In this experiment the flywheel was prevented from rotating by attaching a mechanical stop, so
that the shaft oscillation could be measured using accelerometers as described below. The motor
was then excited using the motor drive. To determine the torque applied to the rotor, the currents
and voltages supplied to the motor were recorded. After the experiment, the measurements
were used to find the applied torque using an advanced induction motor model, developed by
Sudhoff et al. [12,13]. The calculation was performed with a MATLAB routine, also provided by
Sudhoff et al.
The induction motor model [12,13] is a new lumped parameter model, and is an improvement

over the standard q–d model in that it is significantly more accurate in predicting switching
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Fig. 3. Sketch of the rotor components: (a) rotor assembly, (b) rotor assembly without conductive plates, (c) shaft,

(d) rotor-bars, and (e) rotor laminations.
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frequency behavior. In particular, it predicts well the fundamental current component, average
torque, and switching frequency torque ripple. The model is valid over a large operating range
and is parameterized by a few laboratory tests.
Using the stationary rotor setup described above, the response of the connection hardware was

measured using two accelerometers. The accelerometers were arranged on the connection
hardware as shown in Fig. 4, with the rotation axis being in the z-direction. Accelerometer B was
mounted such that the measured acceleration passed through the disk center. Accelerometer A
measured acceleration parallel to B, but was displaced from the center by a distance rA ¼ 0:046m.
By assuming a small angular rotation, it can be shown that

€y �
1

rA

aA;y � aB;y

� �
. (1)

The measured torque is plotted as a function of frequency in Figs. 5a and 6a, for a fundamental
frequency of 20 and 10Hz, respectively, with a PWM duty cycle of 0.4. The corresponding
measured angular acceleration is plotted as a function of frequency in Figs. 5b and 6b. One of the
motivations for this study is to understand the ability of an induction motor to generate structure-
borne sound. Acoustic radiation results from the fluctuating component of the motion. Thus, the
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Fig. 4. Accelerometer arrangement on the connection hardware.
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Fig. 5. (a) Fluctuating component of the measured input torque at the rotor and (b) measured angular acceleration at

the connection hardware, with a fundamental frequency of 20Hz.
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mean value of the torque has been removed, and only the fluctuating component has been
displayed in the figures.
Figs. 6 and 7 show that the fluctuating component of the input torque is dominated by

switching harmonics. The switching harmonics appear as spikes at multiples of roughly 5 kHz.
The figures also show that these frequency components also contribute significantly to the
oscillation of the motor output shaft.
3. Modeling

Two torsional models are developed in this section. In order to compare the model with the
fixed flywheel experiment, only components from the test motor up to the flywheel are included.
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Fig. 6. (a) Fluctuating component of the measured input torque at the rotor and (b) measured angular acceleration at

the connection hardware, with a fundamental frequency of 10Hz.
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The first torsion model assumes a compliant rotor to account for high-frequency modes that
involve its deformation. The second model assumes a rigid rotor.

3.1. Compliant rotor model

The compliant rotor model is intended to account for torsional deformation of the rotor. A
drawing of the model appears in Fig. 7. The model consists of a compliant shaft and rigid annular
disks, which represent the 480 laminations in the induction motor. The disks are connected to the
shaft with effective torsional springs, representing compliancy of the actual laminations. The disks
are also connected to each other with torsional springs representing the rotor-bars. The hardware
that connects the motor to the torque transducer is lumped together as a rigid disk, while the
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torque transducer is modeled as a torsional spring. The torque transducer is attached to the
flywheel, and the flywheel is assumed to be stationary, since it was not allowed to rotate during
the experiments. In other words, the torque transducer is grounded where it would attach to the
flywheel. Also shown in Fig. 7 are y(x,t), the angular displacement of the shaft, f1, the rotation of
the ith lamination, and L, the length of the shaft.
The torsional stiffness of the springs representing the connection between the laminations and

the shaft was found using the finite element analysis program ANSYS. The mesh used is shown in
Fig. 8, and has approximately 40,000 degrees of freedom. Plane stress analysis is assumed here due
to the thinness of the laminations.
To compute the torsional stiffness using finite elements, the slots that house the rotor-bars were

fixed and a torque was applied to the inner surface of the lamination. To apply the torque, a pair
of perpendicular forces was applied to each node on the inner surface such that the resultant force
vector was tangent to the circle. This is shown in Fig. 9.
To describe the interaction of adjacent laminations via the rotor-bars, their deformation must

be considered. Suppose two laminations have undergone a rotational displacement with respect to
each other, then the deformation of the rotor-bar might look as shown schematically in Fig. 10.
The segment of the rotor-bar, between the centers of the two laminations, is very short when
compared to its width or depth. Therefore, it is assumed to deform in shear. Note that in the
figure, the relative scale of h appears much larger than in the actual machine.
To derive the effective torsional stiffness, consider the segment of rotor-bar shown in Fig. 11.

From mechanics of materials, the shear stress,t, and shear strain, g, are related by

t ¼ Gg, (2)
Fig. 8. Finite element mesh used to find the stiffness of a lamination: (a) mesh for the entire lamination and (b) close-up

of the mesh at the base of the rotor-bar slots.
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Fig. 9. Effective torque applied to the inner surface of the lamination.

Fig. 10. Relative displacement of two laminations and the deformation of a rotor-bar segment.
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where G is the shear modulus [14]. For small deformation, d � hg, where h is the distance between
the centers of adjacent laminations. Also, note that the shear stress is related to shear force, F, and
the cross-sectional area, A, by F ¼ At. Thus,

F ¼
GA

h
d. (3)

For a small relative displacement, d ¼ Rðfiþ1 � fiÞ, and T rel ¼ RF , where Trel is the relative
torque between two laminations and R is the distance from the lamination center to the centroid
of the rotor-bar cross-section. Finally, the relation between torque and angular displacement for
one rotor-bar is

T rel ¼
GAR2

h
fiþ1 � fi

� �
. (4)
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Fig. 11. Segment of a rotor-bar deformed in shear.
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The effective torsional stiffness of all the rotor-bars combined is

kbar ¼ Nbar
GAR2

h
, (5)

where Nbar is the number of rotor-bars. For the motor used in the experimental apparatus, the
required dimensions are estimated as A � 1:89� 10�4 m2, R � 0:0895m, and for the 26 gage steel
laminations h ¼ 4:76� 10�4 m.
To derive the equations of motion for the compliant model, depicted in Fig. 7, Lagrange’s

equations are employed:

d

dt

q T � Vð Þ

q _qi

�
q T � Vð Þ

qqi

¼ Qi, (6)

where T and V are the kinetic and potential energy, respectively, and Qi are the generalized forces
corresponding to the generalized coordinates, qi.
The system kinetic energy is the sum of contributions from the shaft, the laminations, and the

connection hardware;

T ¼ T shaft þ T lam þ Thardware. (7)

Similarly, the potential energy has contributions from the shaft, the springs connecting the
laminations to the shaft and each other, and the torque transducer;

V ¼ V shaft þ V lam þ V trans. (8)

For a uniform shaft, the kinetic and potential energies are

T shaft ¼
1

2
rJ

Z L

0

qy
qt

� �2

dx, (9)

and

V shaft ¼
1

2
GJ

Z L

0

qy
qx

� �2

dx, (10)
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where r is the mass density, G is the shear modulus, and J is the polar moment of inertia of the
shaft cross-section [15].
The kinetic energy of the disks representing the laminations is

T lam ¼
1

2

XN lam

i¼1

I lam _f
2

i , (11)

where fi is the angular displacement of each lamination, Ilam is the moment of inertia of each
lamination, and Nlam is the number of laminations. The potential energy of the springs connecting
the laminations to the shaft and to each other can be expressed as

V lam ¼
1

2

XN lam

i¼1

klam y xið Þ � fi

� �2
þ

1

2

XN lam�1

i¼1

kbar fiþ1 � fi

� �2
, (12)

where xi is the position of each lamination along the shaft, and klam is the stiffness of the
lamination found using finite element analysis.
Since the connection hardware is attached to the shaft at x ¼ L, its kinetic energy is

Thardware ¼
1

2
Ihardware _y

2
L; tð Þ, (13)

where Ihardware is the moment of inertia of the connection hardware. Finally, the torque transducer
is connected to both the flywheel and the connection hardware, but the flywheel is fixed. Thus, the
potential energy stored in the torque transducer is

V trans ¼
1

2
ktransy

2 L; tð Þ, (14)

where ktrans is the torsional stiffness of the torque transducer.
The strain and kinetic energies for the shaft are discretized using the method of assumed modes

[16]. To this end the shaft rotation is written as

y x; tð Þ ¼
XN�1
i¼0

ci xð Þpi tð Þ, (15)

where ci(x) are a set of trial functions that satisfy geometric boundary conditions, pi(t) are a set of
generalized coordinates for the shaft rotation, and N is the number of trial functions. The
assumed trial functions are chosen to be the natural modes of a free–free uniform shaft,

ci xð Þ ¼ cos
ipx

L

� �
. (16)

Substitution of Eq. (15) into Eqs. (9)–(14) yields

T shaft ¼
1

2

XN�1
j¼0

XN�1
k¼0

rJ

Z L

0

cjck dx _pj _pk, (17)

V shaft ¼
1

2

XN�1
j¼0

XN�1
k¼0

GJ

Z L

0

c0jc
0
k dx pjpk, (18)
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T lam ¼
1

2

XN lam

i¼1

I lam _f
2

i , (19)

V lam ¼
1

2

XN�1
j¼0

XN�1
k¼0

XN lam

i¼1

klamcj xið Þck xið Þpjpk þ
1

2

XN lam

i¼1

klamf
2
i þ

XN�1
j¼0

XN lam

i¼1

�klamcj xið Þpjfi

þ
1

2

XN lam�1

i¼1

kbarf
2
i þ

1

2

XN lam�1

i¼1

kbarf
2
iþ1 þ

XN lam�1

i¼1

�kbarfifiþ1, ð20Þ

Tdisk ¼
1

2

XN�1
j¼0

XN�1
k¼0

Idiskcj Lð Þck Lð Þ _pj _pk, (21)

V trans ¼
1

2

XN�1
j¼0

XN�1
k¼0

ktranscj Lð Þck Lð Þpjpk, (22)

where c0 ¼ dc=dx.
To find the generalized forces acting on the rotor system, it is assumed that the electromagnetic

torque is applied uniformly to each of the laminations. Thus, for an applied torque, Papp,
distributed equally among the laminations, the virtual work is

dW ¼
XN lam

i¼1

Papp

N lam
dfi, (23)

where dfi is the virtual displacement of the ith lamination. From Eq. (23), the generalized
forces are

Qi ¼
Papp

N lam
(24)

for each generalized coordinate corresponding to a lamination displacement.
Substitution of Eqs. (17)–(22) and (24) into Eqs. (7) and (8), and substituting the result into

Eq. (5) generates equations of motion of the form

M €xþK x ¼ f , (25)

where M and K are the mass and stiffness matrices, respectively. The vector x contains the
generalized coordinates, pi and fi, and the vector f contains the generalized forces.

3.2. Rigid rotor model

A sketch of the rigid rotor model appears in Fig. 12. The model consists of two lumped
masses and two torsional springs. The first lumped mass, of mass moment of inertia I1,
represents the bulk of the rotor. The torsional spring, of stiffness k1, models the segment
of shaft to the right of the rotor laminations, and to the left of the connection
hardware. The connection hardware is lumped together to form I2. Finally, the torque
transducer is represented by a torsional spring, k2. On the test rig, the torque transducer is
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Fig. 12. Schematic of the rigid rotor model.
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connected to the flywheel on the right, as shown in the figure, but the flywheel is assumed
to be stationary. Thus, the spring k2 is fixed on the right. The equations of motion for this
system are

I1 €y1 þ k1y1 � k1y2 ¼ P,

I2 €y2 � k1y1 þ k1 þ k2ð Þy2 ¼ 0, ð26Þ

where y1 and y2 are the angular displacements of I1 and I2, respectively, and P is the torque
applied to the rotor, I1.
4. Comparison of model and experiment

To compare the compliant and rigid-body models to the experiment and each other, the models
are used to predict the response of the connection hardware, based on the measured applied
torque. This is achieved by a frequency domain multiplication of the applied torque with the
impulse response functions for both torsional models.
For zero damping, the impulse response functions of the rigid body and compliant models are

plotted in Fig. 13. The natural frequencies of the first eight modes are listed in Table 1. The
responses matches at low frequencies, when the rotor is behaving as a rigid body. However, at
higher frequencies, the level of response from the compliant model is higher. This is due to the
presence of modes that involve deformation of the rotor.
To make the models more realistic, damping is added to both models. Stiffness-propor-

tional viscous damping is used for this purpose. The equations of motion are modified to have
the form

M €xþC _xþK x ¼ f , (27)
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Table 1

Mode numbers and natural frequencies for the compliant rotor model

Mode number Frequency (Hz)

1 24

2 590

3 2107

4 2653

5 4367

6 5255

7 6592

8 7673

R.D. Widdle Jr. et al. / Journal of Sound and Vibration 290 (2006) 865–881878
where C is a damping matrix such that C ¼ bK and b is scalar. With this representation the
damping ratio in the nth mode is given by

Bn ¼
bon

2
, (28)

where on is the natural frequency of the nth mode in rad/s.
For a damping value of b ¼ 0:001, which translates into a damping ratio of z ¼ 0:015 for the

first mode, the impulse response functions for both torsion models are plotted in Fig. 14. The
response of the compliant model at high frequencies is still higher than that of the rigid-body
model, even though the resonance peaks have been damped out.
Multiplying the damped frequency response functions, of Fig. 14, by the measured applied

torque, shown in Fig. 5, results in two predictions of the connection hardware response during the
experiment. These two predictions and the measured response are plotted in Fig. 15. The
compliant rotor model provides a better prediction of the high-frequency response; the response
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peaks of the compliant model are slightly less than measured, while that for the rigid-body model
significantly underestimates the response.
A simulation was performed to study the influence of varying the drive switching frequency.

For computational expediency the standard q–d model [17] was used to simulate the input torque
to the compliant motor model with zero damping. Fig. 16 shows a surface plot the connection
hardware response as a function of frequency and switching frequency, where lighter colors
indicate a larger response. The vertical line is a natural frequency of the system, and the diagonal
lines are switching harmonics. When a switching harmonic matches a natural frequency of the
model, the response amplitude increases dramatically. This reinforces the need to have an
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accurate model at high frequency, to ensure that natural frequencies are not excited by switching
harmonics.
5. Conclusions

When constructing a model to study the high-frequency vibration of electric machinery in
torsion, it is critical to include compliance of the rotor. Otherwise, an accurate prediction of
the high-frequency response cannot be made. The commonly used rigid rotor model will
underestimate the high-frequency response of the system. Further, it is important to know the
high-frequency dynamics of the system in order to avoid a resonance condition when a switching
harmonic matches a natural frequency.
The compliant induction motor model presented here is an improvement over the rigid-body

model typically used. It is adequate for demonstrating the importance of including compliance in
the rotor when studying high-frequency response. However, it may be improved by further
investigation of the deformation and friction mechanisms at work in the rotor. These factors must
be understood in order to give a designer a model that can be used to manipulate the high-
frequency torsional response of an induction motor.
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